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This paper supplements Reference 1.

1. The equation of the trajectory of a particle sliding along a
string

Consider the plane motion of a point mass (a particle) along an
elastic weightless thread (a string), stretched between two fixed
points.

In the plane of motion of the particle, we specify a fixed system of
coordinates Oxy such that the points where the string are fastened
lie on the x axis at a distance of unit length on different sides of the

origin of coordinates.

Suppose r1 and r2 are the distances of the particle of unit mass
from the right and left points of attachment respectively, g is the
coefficient of tensile stiffness of the string (it is assumed that the
strain of the string obeys Hooke’s law) and � is the preliminary
tension of the string.

After introducing the new coordinates q1 and q2 and the time �
using the formula

and separating the variables in the Hamilton–Jacobi equation, the
following relations were obtained in Ref. 1

(1.1)
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f a point mass (a particle) when it moves (slides) in a plane by inertia along
ng), stretched between two fixed points is obtained. The time dependence
stablished. An equation of the trajectory of the particle when it suddenly
motion of the particle along a straight string (as a model of the swinging
ero gravity) is considered.

© 2008 Elsevier Ltd. All rights reserved.

where

h is the energy constant, and �, c1 and C1 are arbitrary constants
(c1 > 0).

To represent the solution in real time it is necessary to invert the
integral of the equation for q1 (the second equality of (1.1)). (This
was done approximately in Ref. 1 for the case when the particle
moves with a small deviation from the x axis.)

We will write the second equality of (1.1) as follows:
(1.2)

where

(1.3)

The general solution of Eq. (1.2) can be expressed in terms of the
Weierstrass function �, the invariants of which2 are

(1.4)

and has the form

(1.5)
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Here a1 is some root of the polynomial L(q1); for example a1 = 1,
while a2 and a3 are formed from a1 using the formulae2

(1.6)

When a1 = 1 we obtain

The first equation of (1.1) and equality (1.5) enable us to deter-
mine the trajectory of the particle in parametric form, if the new
time � is considered as a parameter.

In order to express the solution in real time, we return to the
relation

(1.7)

(the initial instant of time t0 can be assumed to be equal to zero and
�0 = 0).

The solution in the finite interval � ∈ [0, �*], where �* does not
exceed the half-period of the sine on the right-hand side of the left
equality of (1.1), i.e. �* �/

√
c1, is of practical interest (when � = �*

the direction of motion along the x axis reverses).
We will give an upper estimate of the time t of the motion of the

particle for the current value of parameter � ∈ [0, �*].
Writing the radical on the right-hand side of Eq. (1.7) in the form√

q1 − q2
√

q1 + q2, we apply the Holder inequaity3 to integral (1.7)
and obtain the limit

(1.8)

where
(1.9)

where z = C1 + �, z3 is the solution of the equation �(z3) = a3 and
�(z) is the zeta function. (A method of solving the last equation
uniquely can be found in Ref. 2.)

2. The equation of the trajectory of a particle fastened to a
string

When the particle is suddenly decelerated (jammed), the poten-
tial energy of the string is represented by the formula1

where a is the abscissa of the particle in the rest position. By Hooke’s
law � � 1. We will therefore henceforth assume that 2 − � ≈ 2.
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In q1, q2 coordinates, we obtain the following expressions for
the potential and kinetic energies

(2.1)

(2.2)

When a = 0, after changing to the new time �, the variables in the
Hamilton–Jacobi equation can be separated

(2.3)

The polynomial L1(q1) has the same form as L(q1) in Eq. (1.2),
but with different coefficients

The invariants g2 and g3 of the Weierstrass function have the
form (1.4), while the solution has the form (1.5) with a1 = 1 and
coefficients a2 and a3 calculated from formulae (1.6).

The solution of the second equation of (2.3) also has the form
(1.5).

Hence, we have obtained the trajectory of a jammed particle
(in the non-local formulation of the problem). (The solution in real
time can be expressed in the same way as in Section 1.)

If the initial velocity is directed along the y axis, the trajectory
degenerates into a section of the y axis. In this case, from the energy
integral
at the level H = h, after making the replacement y2 = z2 − 1, we obtain

(2.4)

The roots z1 and z2 of the trinomial in the radicand are real and
have different signs, where z2 < 0 and 1 < z1. The integral can be
written in the form of a combination of elliptic integrals of the first
and third kinds.4

Hence we obtain the oscillation period of the particle

If the motion of the particle occurs at a low energy level, the
limitation a = 0 can be removed. In the linear approximation, the
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variables x and y can be separated and describe harmonic oscilla-
tors.

3. Forced motion of a particle along a string

We will consider the case of the forced motion of a particle with
constant velocity about a point on a tensioned string, which is, at the
given instant, in contact with the particle. The velocity is directed
along the straight line passing through the points where the string
is fastened x = −1, x = 1.

The particle can mean a body – a lift, dynamically symmetrical
about this straight line, the rollers of which rotate with constant
angular velocity u, and at the instant of time t = 0 at the point x = a,
a ∈ (−1; 1) squeeze the string (cable) without slipping. Suppose
that, before squeezing, the lift slides along the string in the direction
of x increasing with a velocity v0 ≤ u.
From the instant it is squeezed the string is deformed, it is
stretched through the rollers and acts on the lift with a force of
elasticity 2g(ut − x + a)/(1 − x2), and hence the equation of motion
of the particle (of unit mass), taking the dissipation force (−2bẋ),
into account, confining ourselves to considering the motion in the
region of the point x = a, can be written in the form

(3.1)

From its general solution (when b2 < 2g/(1 − a2)), with the initial
conditions x(0) = a, ẋ(0) = v0, we obtain

(3.2)

It can be seen from the solution that the particle begins to move
(when t > 0) with a velocity less than u0 (this can be seen particu-
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larly well when b = 0, when C1 = 0 and C2 < 0). For further motion at
constant velocity oscillations are superimposed.

Solution (3.2) enables us to estimate the preliminary tension �,
at which tension in the branches of the string does not disappear
during motion,

Here tM is the time of the first maximum on the right-hand side
of the inequality.

If the string is not pretensioned, then from the instant it is
squeezed by the rotating rollers the left branch of the string
(the part of the string between the left support and the lift)
sags, and the force of elasticity will be defined by the expression
g[ut − (x − a)]/(1 − x). Then, up to the instant when the tension in the
right-hand branch disappears, one can use the solution of Eq. (3.1),
with the quantity 2g replaced by g and the quantity (1 − a2) replaced

by (1 − a). The instant of time tn when the tension in the right-
hand branch disappears is given by the expression ut − (x − a) = 0,
after substituting the solution into it. The return of the string to
the unperturbed state corresponds to this instant, and the velocity
of the lift is a maximum. Further motion to the right support may
continue in a sliding mode, while jamming of the string occurs in
the last (deceleration) stage (see Section 2).

Note again that if a gravitational force acts along the string, a
constant term, corresponding to the static strain of the string, is
added to solution (3.2).
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